ABSTRACT
The current paper is concerned with cycling on a stationary home exercise bike, in particular with the application of virtual environment (VE) immersion and of coaching by a virtual agent giving biofeedback. It describes their effects on the sense of presence of participants as well as on their motivation. Participants were presented with a virtual racetrack with two levels of VE immersion (high vs. low) and two levels of a virtual coach (with vs. without), and their experience of presence as well as their intrinsic motivation were measured by means of standardized questionnaires. We found that high VE immersion caused significantly higher levels of presence and, more importantly, of motivation. The virtual coach mainly served to reduce tension and negative effects of VE immersion.

Keywords
Motivation, presence, virtual coach, biofeedback, home fitness exercise

INTRODUCTION
Even though home fitness equipment is often bought with the best intentions, its use frequency appears to decay quite rapidly after initial enthusiasm has faded away. Factors causing this include lack of time, lack of motivation, lack of fun (being bored) and lack of confidence (feeling insecure) whether the exercise is being done properly and whether progress is being made. Thus, a need exists for fitness equipment that can support the user in being active in a stimulating, motivating way.

The current study deals with the question whether virtual environments (VEs) and biofeedback can help raise motivation for engaging in physical exercise. We hypothesized that offering a more immersive environment in which the user feels present would heighten the fun the user is having, and would thus have a beneficial effect on the user's motivation. Additionally, we expected that a virtual coach providing biofeedback information of measured physiological signals, specifically heart rate, would increase the motivation as well, as it helps goal-setting and raises confidence, perceived control and competency, all of which help boost motivation.

Motivation
Motivation is the concept we use when we describe the forces acting on or within an organism to initiate and direct behaviour (s.f. Petri, 1981). We usually discern between intrinsic and extrinsic motivation, where intrinsic motivation refers to engaging in an activity purely for the pleasure and satisfaction derived from doing the activity, whereas extrinsic motivation refers to engaging in a variety of behaviours as a means to an end and not for their own sake (Deci, 1975). Intrinsic motivation is often considered more powerful and leading to more stable behaviour than extrinsic motivation and is highly relevant for sports. Below we will discuss how immersion and feedback are thought to influence intrinsic motivation.

Immersion and presence
Slater & Wilbur (1997) refer to immersion as the objectively measurable properties of a VE. According to them it is the “extent to which computer displays are capable of delivering an inclusive, extensive, surrounding, and vivid illusion of reality to the senses of the VE participant” (p. 604). Thus immersion refers to the system’s ability to shut out sensations from the
real world, accommodating many sensory modalities with a rich representational capability, and a
panoramic field of view and sound.

Presence can be conceptualised as the experiential counterpart of immersion. It has been defined as the
sense of ‘being there’ in a mediated environment (e.g. Heeter, 1992; Steuer, 1992) and more recently as the
“perceptual illusion of non-mediation” (Lombard & Ditton, 1997), which broadens the definitional scope
somewhat.

Various empirical studies have demonstrated a positive effect of immersion factors on presence,
including field of view, stereoscopic imagery, interactivity, pictorial realism, spatial audio, and haptic
feedback (Hendrix & Barfield, 1996a,b; Welch et al., 1996; IJsselsteijn et al., 2001).

Presence is generally considered a positive outcome of immersive environments, leading to engagement
and more intense enjoyment. If presence could make fitness a more engaging and fun experience, this is
likely to boost intrinsic motivation to train.

Biofeedback

The term biofeedback was originally used to describe laboratory procedures (developed in the 1940’s)
where trained research subjects were provided with information about their own brain activity, blood
pressure, muscle tension, heart rate and other bodily functions that are normally not under our voluntarily
control, with the purpose of exerting conscious control over them. Today, biofeedback is often used as a
training technique in which people are taught to improve their health and performance by using
signals from their own bodies.

In the current experiment, heart rate was measured and, based on this information, feedback was
provided to the participant using a social agent, who could either encourage participants to do better, tell
them they were doing great, or tell them to slow down a little, if the heart rate became too high. In this way,
the coach could both be an extrinsic motivator and at the same time provide feedback on the impact of the
exercise. This information is likely to enhance the person’s perceived control and competence and
stimulates goal-setting and adherence: the information underlines the person’s efforts and progress.

METHOD

Design

A basic two-by-two within-subjects experimental design was employed whereby participants were
presented with two levels of Immersion (high vs. low) and two levels of Virtual coach (with vs. without).

Respondents

Twenty-four employees of Philips participated in the study, none of who engaged in frequent physical
exercise. Male/female distribution was even; their average age was 41.3 years.

Equipment and Setting

The experiment was conducted in the HomeLab, at the Philips Research laboratories in Eindhoven, The
Netherlands. HomeLab is a future home-simulation, a test laboratory that looks like a normal house and thus
provides us with a relatively natural context in which to test the behaviour of the participants using the
home fitness application.

The experiment was conducted in a room, which was darkened for the purpose of the experiment to avoid
bright sunlight unpredictably influencing the visibility of the screen. Participants were asked to seat
themselves on a racing bicycle placed on a training system with variable resistance (fixed for the purpose
of the study). The bicycle was placed in front of a wall-mounted screen on which the environment and
the coach were projected with a beamer.

Stimuli

The high immersion condition showed a fairly detailed interactive computer-generated visualization of a
person cycling on a racing bicycle through a landscape (Tacx, Wassenaar, NL). An impressions of
this condition is given in Figure 1. Interaction with the environment took place via the steer (for direction)
and biking velocity. The low immersion condition showed an abstract picture of a racetrack in bird’s eye
view, with a dot indicating the position of the biker (see Figure 2 for an impression). Interaction with the
environment was less rich since participants did not have to use the steer to stay on track, nor could they
influence the velocity of the dot on the track (although most participants were not aware of this).

In the condition with virtual coach, an avatar-like female appeared every minute. She gave feedback to
the participant, based on heart-rate information measured with a special chest belt. In the second
condition this image did not appear.

![Figure 1. Impression of the high-immersion with-coach condition (above).](image-url)
Dependent variables
The main dependent measures were intrinsic motivation and presence. Motivation was measured using an existing, well-validated questionnaire, the Intrinsic Motivation Inventory (IMI), consisting of six subscales (interest/enjoyment – which is the most central one to motivation – perceived competence, value/usefulness, perceived control/choice, felt pressure and tension, and effort). For measuring presence various methods have been used or proposed to date (for a review, see IJsselsteijn et al., 2000). The ITC Sense of Presence Inventory (Lessiter et al., 2001) provided sufficient sensitivity, while having proven reliability and validity. It consists of four subscales: spatial presence, engagement, ecological validity, and negative effects. Besides this, heart rate and velocity of the participant were also measured and recorded. The heart rate was used as input for the coach’s directions; average speed was considered as a corroborative behavioural measure of motivation, since one would expect participants to work harder during their exercise when motivation is higher.

Procedure
Participants – in sports clothing – received a short introduction upon entering and after putting on the chest belt for easy heart rate measurement, mounted the bicycle for the first session. The total procedure consisted of four sessions, the order of which was counterbalanced. After every session participants filled out the IMI and ITC-SOPI, which also gave them time to recover from their exercise. The experiment took about 1.5 hours to complete.

RESULTS
For both the ITC-SOPI presence questionnaire and the Intrinsic Motivation Inventory (IMI), components were computed based on the factor structures that were validated in earlier studies. Subsequently, analyses of variance (ANOVA) were performed on these components according to the full model, with Immersion (high vs. low) and Coach (with vs. without) as independent factors. Results will be reported for intrinsic motivation components first, then for presence. Lastly we will report bivariate correlations between the various components.

Intrinsic Motivation
The six IMI components were all subjected to full model ANOVAs. Four scales -- interest/enjoyment, perceived competence, value/usefulness, and perceived control – showed significant effects of Immersion: all scores were higher for high immersion. This last scale also showed a significant effect of the virtual coach, as did the pressure/tension scale: both scores were lower with the coach present. Finally, the effort/importance scale did not show any significant results. Means of the most important scales are visualized in Figure 3; statistics are reported in Table 1.

Average velocity was used as a corroborative behavioural measure of motivation. Indeed velocity scores showed the same pattern of results as the questionnaire data did. There was a main effect of Immersion (F(1,92)=16.37, p<.001), with average speed higher in the high (v=23.8 km/h) vs. low (v=20.6 km/h) immersion condition.

Presence
Secondly, four separate ANOVAs with the components of presence (spatial presence, engagement, ecological validity, and negative effects) dependent were performed. Three components showed strong and highly significant effects of Immersion, indicating that spatial presence, engagement, and ecological validity were higher for high immersion. The effect on ‘negative effects’ was smaller, but significant. This component also showed a significant effect of Coach, where participants reported less negative effects in the condition with the virtual coach present. No significant interactions were found. Means are visualized in Figure 4, results of the ANOVAs are reported in Table 2.

<table>
<thead>
<tr>
<th>Table 1: ANOVAs of motivation components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Immersion</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>interest/enjoyment</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>perceived competence</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>value/usefulness</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>perceived control</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>pressure/tension</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>effort/importance</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note: all F(1, 92), p values printed in bold < .05
Correlations between motivation and presence
We were also interested in testing relationships between the various components of motivation and presence. For this reason, bivariate correlations were computed. Space does not allow full coverage of all results. In summary we found considerable correlations between the motivation scales interest/enjoyment, perceived competence, value/usefulness, and perceived control (r=.44-.67, p<.01), high correlations between presence scales – spatial presence, engagement, and ecological validity (r=.85-.89, p<.001), and some moderate but significant correlations between spatial presence, engagement and ecological validity on one hand and interest/enjoyment, perceived control, pressure/tension on the other (r=.22-.40, p<.05).

Table 2: ANOVAs of presence components

<table>
<thead>
<tr>
<th></th>
<th>Immersion</th>
<th></th>
<th>Coach</th>
<th></th>
<th>Imm x Coach</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F p</td>
<td></td>
<td>F p</td>
<td></td>
<td>F p</td>
<td></td>
</tr>
<tr>
<td>spatial presence</td>
<td>34.54 .00</td>
<td>1.33 .25</td>
<td>0.45 .50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>engagement</td>
<td>67.72 .00</td>
<td>0.72 .40</td>
<td>0.84 .36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ecological validity</td>
<td>61.87 .00</td>
<td>0.29 .56</td>
<td>0.07 .79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>negative effects</td>
<td>5.50 .02</td>
<td>6.10 .02</td>
<td>0.13 .72</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: all F(1, 92), p values printed in bold < .05
DISCUSSION & CONCLUSIONS
The results of this study show that offering a more immersive environment in which the user feels present heightens the fun the user is having, and thus has a beneficial effect on the user's motivation (Hypothesis 1). In the highly immersive environment, where the presence experience was stronger, participants reported more interest and enjoyment, more perceived competence and control. Additionally, we found some effects of the virtual coach providing biofeedback information, but not quite what we expected. Intrinsic motivation was not higher with the coach. However, her presence did lower perceived pressure and tension and the negative effects of VE immersion, which is good. It also lowered perceived

control. This last finding is somewhat striking since one would expect control to increase with feedback. Perhaps receiving directions regarding the intensity of your workout counteracted this effect. In future studies we hope to disentangle these effects further and continue our efforts to make virtual cycling as good as the real thing.

ACKNOWLEDGMENTS
The authors kindly thank the AIM-team of PDSL Eindhoven for using and modifying their Virtual Coach software and Virtual Coach animations for use in this study.
REFERENCES

